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Sequence Containers

Bad Dad Joke of the Day:

- What’s another name for oceans?
- Seat++!
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Game Plan

* Finishing Up C++ Types
e Survey Results!
 Overview of STL
 Sequence Containers

« Container Adaptors




C++ Types (cont.)



Streams Aside: When do | use...

...Cin and cout?
...a filestream (fstream)?

...a stringstream?
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stringstream vs. string
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stringstream vs. string

When should I use a stringstream?

1. Processing strings
- Simplify “/./a/b/..” to “/a”
2. Formatting input/output

- uppercase, hex, and other stream manipulators

3. Parsing different types

- stringTolnteger() from previous lectures

11



stringstream vs. string

When should I use a stringstream?

1. Processing strings
- Simplify “/./a/b/..” to “/a”
2. Formatting input/output

- uppercase, hex, and other stream manipulators

3. Parsing different types

- stringTolnteger() from previous lectures

If you're just
concatenating strings,
strappend() is faster
than using a
stringstream!
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Survey Results!



@ Freshmen

@ Sophomore
Junior

@ Senior

@ Masters

@® PhD
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@ Freshmen

@ Sophomore
Junior

@ Senior

@ Masters

@® PhD

Majors/Programs:
 Computer Science

« Undecided :)

* Aero/Astro

» Electrical Engineering

* Mechanical Engineering
¢ SymSys

* And more!
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@ Freshmen

@ Sophomore
Junior

@ Senior

@ Masters
@® PhD

Why you're here:
* |ndustry usages
« C++ practice

« Supplement CS 106B
* Personal projects

Majors/Programs:
 Computer Science

« Undecided :)

* Aero/Astro

» Electrical Engineering

* Mechanical Engineering
¢ SymSys

* And more!
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The Standard Template
Library (STL)



Generic Programming

Standard
Template Library

Modern C++

Made by Avery Wang
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Overview of STL

“As mathematicians learned to lift theorems
into their most general setting, so | wanted to
lift algorithms and data structures.”

— Alex Stepanov, inventor of the STL




Overview of STL

Functors




Overview of STL

|terators

Functors




Overview of STL




Sequence Containers
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Sequence Containers

Provides access to sequences of elements.

Includes:
® ccvector<Ii'>
® : :deque<T>
[ cclist<T>
® ::array<[>

® ::forward 1list<T>



s vector<i'>



csvector<Ii'>

A vector represents a sequence of elements of any type.

You specify the type when using the vector:

vector<int> veclInt;
vector< > vecStr;
vector<myStruct> vecStruct;

vector< vector< >> vecOfVec;
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Stanford vs. STL: Part 1

/* Stanford C++ Version it
Vector<int> v = { 1, 3, 7 };

v += 271;

cout << v[0] << endl;
cout << v[v.size() - 1] << endl;

Vector<int> first v.subList(0, 2);
Vector<int> last v.subList(2);

v.remove(0);




Stanford vs. STL: Part 1

/* Stanford C++ Version */ /* Standard C++ Version */
Vector<int> v = { 1, 3, 7 }; std::vector<int>v =4{1,3,7};

v += 271;

cout << v[0] << endl;
cout << v[v.size() - 1] << endl;

Vector<int> first v.subList(0, 2);
Vector<int> last v.subList(2);

v.remove(0);




Stanford vs. STL: Part 1

/* Stanford C++ Version */ /* Standard C++ Version */
Vector<int> v = { 1, 3, 7 }; std::vector<int>v=4{1,3,7};

vV += 271° v.push_back(271);

cout << v[0] << endl;
cout << v[v.size() - 1] << endl;

Vector<int> first v.subList(0, 2);
Vector<int> last v.subList(2);

v.remove(0);




Stanford vs. STL: Part 1

/* Stanford C++ Version */ /* Standard C++ Version */
Vector<int> v = { 1, 3, 7 }; std::vector<int>v=4{1,3,7};

vV += 271° v.push_back(271);

cout << v[0] << endl; cout << v.front() << endl;
cout << v[v.size() - 1] << endl; cout << v.back() << endl;

Vector<int> first v.subList(0, 2);
Vector<int> last v.subList(2);

v.remove(0);




Stanford vs. STL: Part 1

/* Stanford C++ Version */ /* Standard C++ Version */
Vector<int> v = { 1, 3, 7 }; std::vector<int>v=4{1,3,7};

vV += 271° v.push_back(271);

cout << v[0] << endl; cout << v.front() << endl;
cout << v[v.size() - 1] << endl; cout << v.back() << endl;

Vector<int> first v.subList(0, 2);

Vector<int> last v.subList(2); // no such thing as a sublist

v.remove(0);




Stanford vs. STL: Part 1

/* Stanford C++ Version */ /* Standard C++ Version */
Vector<int> v = { 1, 3, 7 }; std::vector<int>v=4{1,3,7};

vV += 271° v.push_back(271);

cout << v[0] << endl; cout << v.front() << endl;
cout << v[v.size() - 1] << endl; cout << v.back() << endl;

Vector<int> first v.subList(0, 2);

Vector<int> last v.subList(2); // no such thing as a sublist

v.remove(0); v.erase(v.begin()); // or v.pop_back()
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Stanford vs. STL: Part 2

Stanford C++ Version * [
Vector<string> V - { llAll, IIBII, "C" };

/* Counting for loop. */
for (int 1 = 0; 1 < v.size(); 1++) {

cout << v[i] << endl;

}

/* Range-based for loop. */
for (string elem: v) {

cout << elem << endl;
}




Stanford vs. STL: Part 2

Veéetor<strung> v = {4 "A"; "B", "C" }: std::vector<string> v = { “A”, “B”, “C" };

/* Counting for loop. */

for (int 1 = 0; 1 < v.size(); 1++) {
cout << v[i] << endl;

}

/* Range-based for loop. */
for (string elem: v) {

cout << elem << endl;
}




Stanford vs. STL: Part 2

Veéetor<strung> v = {4 "A"; "B", "C" }: std::vector<string> v = { “A”, “B”, “C" };

; Basically the same

/* Counting for loop. */ // . A . _ .

for (int 1 = 0; 1 < v.size(); i++) { fOr(ﬁze_tl-Q,|‘<\hSTF(L ++i) {
cout << v[i] << endl; cout << v[i] << endl;

} by
/* Range-based for loop. */

for (string elem: v) {
cout << elem << endl;
}




/*

Stanford vs. STL: Part 2

Stanford C++ Version * [

Vector<string> V — { IIAH, IIBII, "C" };

/* Counting for loop. */
for (int 1 = 0; 1 < v.size(); 1++) {

}

cout << v[i] << endl;

/* Range-based for loop. */
for (string elem: v) {

}

cout << elem << endl;

/* Standard C++ Version */
std::vector<string> v = { “A”, "B”, “"C" };

// Basically the same

for (size_ti=0; i < v.size(); ++i) {
cout << Vv[i] << endl;

b

// The same
for (string elem: v) {

cout << elem << endl;
by
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Why the Difference?

Why doesn’t vector bounds check by default?

Hint: Remember our discussion of the philosophy of C++



Why the Difference?

Why doesn’t vector bounds check by default?

Hint: Remember our discussion of the philosophy of C++

If you write your program , bounds checking will just
your code down.



Play around with the std: :vector!

http://www.cplusplus.com/reference/vector/

vector/
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http://www.cplusplus.com/reference/vector/vector/
http://www.cplusplus.com/reference/vector/vector/

Summary of Stanford Vector<T> vs : :vector<T>

What you want to do

Stanford Vector<int>

vector<int>

Create an empty vector

Vector<int> v;

vector<int> v;

Create a vector with n copies of zero

Vector<int> v(n);

vector<int> v(n);

Create a vector with n copies of a value k

Vector<int> v(n, k);

vector<int> v(n, k);

Add k to the end of the vector

v.add(k);

v.push_back(k);

Clear vector

v.clear();

v.clear();

Get the element at index i
(* Verify that i is in bounds!)

int k = v.get(i);
int k = v[i];

int k = v.at(i);
int k = v[i]; (%)

Check if the vector is empty

if (v.isEmpty()) ...

if (v.empty()) ...

Replace the element at index i
(* Verify that i is in bounds!)

v.get(i) = k;
v[i] = k;

v.at(i) = k;
v[i] = k; (°




One Important Similarity

What you want to do

Stanford Vector<int>

std: :vector<int>

Create an empty vector

Vector<int> v;

vector<int> v;

Create a vector with n copies of zero

Vector<int> v(n);

vector<int> v(n);

Create a vector with n copies of a value k

Add k to the end of the vector

Vector<int> v(n, k);

v.add(k);

vector<int> v(n, k);

v.push_back(k);

Clear vector

v.clear();

v.clear();

Get the element at index i (verify that i is in
bounds)

int k
int k

v.get(i);
v[i];

int k = v.at(i);
int k = v[i];

Check if the vector is empty

if (v.isEmpty()) ...

if (v.empty()) ...

Replace the element at index i (verify that i is
in bounds)

v.get(i) = k;
vii] = k;

v.at(i) = k;
vii] = k;




One Important Similarity

What you want to do

Stanford Vector<int>

std: :vector<int>

Create an empty vector

Vector<int> v;

vector<int> v;

Create a vector with n copies of zero

Vector<int> v(n);

vector<int> v(n);

Create a vector with n copies of a value k Vector<int> v(n, k); vector<int> v(n, k);
Add k to the end of the vector v.add(k); v.push_back(k);
Clear

Get the

bound What happens if we try to add an element to the

Check beginning of a vector?

Replac

in bou
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What if we had a push front ()7

Suppose push front existed and we used it.
Let’s look at a small vector:

2l el sl
I

Oth index
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What if we had a push front()?

Suppose push front existed and we used it.
Let’s look at a small vector:

vec.

Need to shift these
elements up to make space
in the Oth position.

Oth index
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What if we had a push front ()7

Suppose push front existed and we used it.
Let’s look at a small vector:
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Need to shift these
elements up to make space
in the Oth position.
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What if we had a push front ()7

Suppose push front existed and we used it.
Let’s look at a small vector:

vec.

Now we can insert the new
element.

Oth index



What if we had a push front ()7

Suppose push front existed and we used it.
Let’s look at a small vector:

vec.
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What if we had a push front()?
AR -

HERIDEEN
I

Oth index



Conclusion: push front () is slow!

A vector is the tool of choice in most applications!
e F[ast
e Lightweight
e [ntuitive

However, we just saw vectors grow efficiently in only one direction.

Sometimes it is useful to be able to push front Qquickly!

C++ has a solution!




: :deque<>



: :deque<>

Pronounced “deck”.
Stands for a double ended queue.

Does everything a vector can do

AND

Unlike a vector, it is possible (and fast) to push front and
pop front!



Syntax of

/¥ Standard C++ Version */
std::deque<int>d =41, 3,7 };

d.push_back(271);
d.push_front(-1);

cout << d.front() << endl;
cout << d.back() << endl;

d.pop_back();
d.pop_front();

: :deque<>

//d=A{1,3,7}

//d={1,3,7, 271}
//d={-1,1,3,7, 271}

// prints -1
// prints 271

// d = {_11 1/ 3/ 7}
//d=A{1,3,7%}
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How does . :deque<T> work?

There is no single specific implementation of a deque, but one
common one might look like this:

™
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Wait a minute...



Question

If deque can do everything a vector can do and also has a
push front..

Why use a vector at all?



Downsides of : :deque<T>

Deques support fast push front operations.

However, for other common operations like element access,
vector will always outperform a deque.

Let’s see this in action!
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Which to Use?

“vector is the type of sequence that should be used by default...
deque is the data structure of choice when most insertions and
deletions take place at the beginning or at the end of the
sequence.”

— C++ |ISO Standard (section 23.1.1.2): (’\ :’;\
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Recall stacks and queues:
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Recall stacks and queues:
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Container Adaptors

Recall stacks and queues:

stack

push_back

back



Container Adaptors

Recall stacks and queues:

back

stack queue



Container Adaptors

Recall stacks and queues:

pop_front

d

back

stack queue



Container Adaptors

Recall stacks and queues:

back

stack queue



Container Adaptors

How can we implement stack and queue using the containers we have?



Container Adaptors

How can we implement stack and queue using the containers we have?

Stack:

Just limit the functionality of a vector/deque to only allow push back
and pop back.

Queue:

Just limit the functionality of a deque to only allow push back and
pop front.

Plus only allow access to top element




Container Adaptors

For this reason, stacks and queues are known as container adaptors.

std::Stac

Defined in header <stack>
template<

class T,

class Container = std::deque<T>
> class stack;

The std::stack class is a container adapter that gives the programmer the functionality of a stack - specifically, a
FILO (first-in, last-out) data structure.

The class template acts as a wrapper to the underlying container - only a specific set of functions is provided. The
stack pushes and pops the element from the back of the underlying container, known as the top of the stack.

Template parameters

T - The type of the stored elements. The behavior is undefined if T is not the same type as
Container::value_ type. (since C++17)

Container - The type of the underlying container to use to store the elements. The container must satisfy the
requirements of SequenceContainer. Additionally, it must provide the following functions with the
usual semantics:

¢ back()
e push_back()
« pop_back()
The standard containers std: :vector, std: :deque and std: : list satisfy these requirements.

std:queue

Defined in header <queue>

template<

class T,

class Container = std::deque<T>
> class queue;

The std: :queue class is a container adapter that gives the programmer the functionality of a queue - specifically, a
FIFO (first-in, first-out) data structure.

The class template acts as a wrapper to the underlying container - only a specific set of functions is provided. The
queue pushes the elements on the back of the underlying container and pops them from the front.

Template parameters

T - The type of the stored elements. The behavior is undefined if T is not the same type as
Container::value_type. (since C++17)

Container - The type of the underlying container to use to store the elements. The container must satisfy the
requirements of SequenceContainer. Additionally, it must provide the following functions with the
usual semantics:

e back()
o front()
e push_back()
« pop_front()
The standard containers std: :deque and std: : list satisfy these requirements.




Container Adaptors

For this reason, stacks and queues are known as container adaptors.

std::Stac

Defined in header <stack>
template<

class T,

class Container = std::deque<T>
> class stack;

The std::stack class is a container adapter that gives the programmer the functionality of a stack - specifically, a
FILO (first-in, last-out) data structure.

The class template acts as a wrapper to the underlying container - only a specific set of functions is provided. The
stack pushes and pops the element from the back of the underlying container, known as the top of the stack.

Template parameters

T - The type of the stored elements. The behavior is undefined if T is not the same type as
Container::value_ type. (since C++17)

Container - The type of the underlying container to use to store the elements. The container must satisfy the
requirements of SequenceContainer. Additionally, it must provide the following functions with the
usual semantics:

¢ back()
e push_back()
« pop_back()
The standard containers std: :vector, std: :deque and std: : list satisfy these requirements.

std:queue

Defined in header <queue>

template<

class T,

class Container = std::deque<T>
> class queue;

The std: :queue class is a container adapter that gives the programmer the functionality of a queue - specifically, a
FIFO (first-in, first-out) data structure.

The class template acts as a wrapper to the underlying container - only a specific set of functions is provided. The
queue pushes the elements on the back of the underlying container and pops them from the front.

Template parameters

T - The type of the stored elements. The behavior is undefined if T is not the same type as
Container::value_type. (since C++17)

Container - The type of the underlying container to use to store the elements. The container must satisfy the
requirements of SequenceContainer. Additionally, it must provide the following functions with the
usual semantics:

e back()
o front()
e push_back()
« pop_front()
The standard containers std: :deque and std: : list satisfy these requirements.




Container Adaptors

For this reason, stacks and queues are known as container adaptors.

std::Stac

Defined in header <stack>
template<

class T,

class Container = std::deque<T>
> class stack;

The std::stack class is a container adapter that gives the programmer the functionality of a stack - specifically, a
FILO (first-in, last-out) data structure.

The class template acts as a wrapper to the underlying container - only a specific set of functions is provided. The
stack pushes and pops the element from the back of the underlying container, known as the top of the stack.

Template parameters

T - The type of the stored elements. The behavior is undefined if T is not the same type as
ontainer::value De ince

Container - The type of the underlying container to use to store the elements. The container must satisfy the
requirements of SequenceContainer. Additionally, it must provide the following functions with the
usual semantics:

¢ back()
e push_back()
« pop_back()
The standard containers std: :vector, std: :deque and std: : list satisfy these requirements.

std:queue

Defined in header <queue>

template<

class T,

class Container = std::deque<T>
> class queue;

The std: :queue class is a container adapter that gives the programmer the functionality of a queue - specifically, a
FIFO (first-in, first-out) data structure.

The class template acts as a wrapper to the underlying container - only a specific set of functions is provided. The
queue pushes the elements on the back of the underlying container and pops them from the front.

Template parameters

T - The type of the stored elements. The behavior is undefined if T is not the same type as
Container::value t

Container - The type of the underlying container to use to store the elements. The container must satisfy the
requirements of SequenceContainer. Additionally, it must provide the following functions with the
usual semantics:

e back()
o front()
e push_back()
« pop_front()
The standard containers std: :deque and std: : list satisfy these requirements.




e

Next time

[terators and Associative Containers
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Bonus Content...
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Where we are going...

Here is a program that generates a vector with random entries,
sorts it, and prints it, all in one go!

int kNumInts = 200;
vector<int> vec (kNumInts) ;

generate (vec. (), vec. (), rand);
sort (vec. (), vec. ());
copy (vec. (), vec. (),

ostream iterator<int>(cout, "\n"));



