Sequence Containers

CS 106L Winter 2020 Avery Wang and Anna Zeng

Sequence Containers

Bad Dad Joke of the Day:

CS 106L Winter 2020 Avery Wang and Anna Zeng

Sequence Containers

Bad Dad Joke of the Day:

- What’s another name for oceans?
- Seat++!

Creds: James

CS 106L Winter 2020 Avery Wang and Anna Zeng

Game Plan

* Finishing Up C++ Types
e Survey Results!
 Overview of STL
 Sequence Containers

« Container Adaptors

C++ Types (cont.)

Streams Aside: When do | use...

...Cin and cout?
...a filestream (fstream)?

...a stringstream?

Streams Aside: When do | use...

]

...Cin and cout? console &
keyboard

...a filestream (fstream)?

...a stringstream?

Streams Aside: When do | use...

]

...Cin and cout? console &

keyboard N
...a filestream (fstream)?

HLES

...a stringstream?

Streams Aside: When do | use...

]

...Cin and cout? console &

keyboard N
...a filestream (fstream)?

HLES

...a stringstream? PP,

stringstream vs. string

10

stringstream vs. string

When should I use a stringstream?

1. Processing strings
- Simplify “/./a/b/..” to “/a”
2. Formatting input/output

- uppercase, hex, and other stream manipulators

3. Parsing different types

- stringTolnteger() from previous lectures

11

stringstream vs. string

When should I use a stringstream?

1. Processing strings
- Simplify “/./a/b/..” to “/a”
2. Formatting input/output

- uppercase, hex, and other stream manipulators

3. Parsing different types

- stringTolnteger() from previous lectures

If you're just
concatenating strings,
strappend() is faster
than using a
stringstream!

12

Survey Results!

@ Freshmen

@ Sophomore
Junior

@ Senior

@ Masters

@® PhD

14

@ Freshmen

@ Sophomore
Junior

@ Senior

@ Masters

@® PhD

Majors/Programs:
 Computer Science

« Undecided :)

* Aero/Astro

» Electrical Engineering

* Mechanical Engineering
¢ SymSys

* And more!

15

@ Freshmen

@ Sophomore
Junior

@ Senior

@ Masters
@® PhD

Why you're here:
* |ndustry usages
« C++ practice

« Supplement CS 106B
* Personal projects

Majors/Programs:
 Computer Science

« Undecided :)

* Aero/Astro

» Electrical Engineering

* Mechanical Engineering
¢ SymSys

* And more!

16

The Standard Template
Library (STL)

Generic Programming

Standard
Template Library

Modern C++

Made by Avery Wang

18

Overview of STL

“As mathematicians learned to lift theorems
into their most general setting, so | wanted to
lift algorithms and data structures.”

— Alex Stepanov, inventor of the STL

Overview of STL

Functors

Overview of STL

|terators

Functors

Overview of STL

Sequence Containers

23

Sequence Containers

Provides access to sequences of elements.

Includes:
® ccvector<Ii'>
® : :deque<T>
[cclist<T>
® ::array<[>

® ::forward 1list<T>

s vector<i'>

csvector<Ii'>

A vector represents a sequence of elements of any type.

You specify the type when using the vector:

vector<int> veclInt;
vector< > vecStr;
vector<myStruct> vecStruct;

vector< vector< >> vecOfVec;

Stanford vs. STL: Part 1

Stanford vs. STL: Part 1

/* Stanford C++ Version it
Vector<int> v = { 1, 3, 7 };

v += 271;

cout << v[0] << endl;
cout << v[v.size() - 1] << endl;

Vector<int> first v.subList(0, 2);
Vector<int> last v.subList(2);

v.remove(0);

Stanford vs. STL: Part 1

/* Stanford C++ Version */ /* Standard C++ Version */
Vector<int> v = { 1, 3, 7 }; std::vector<int>v =4{1,3,7};

v += 271;

cout << v[0] << endl;
cout << v[v.size() - 1] << endl;

Vector<int> first v.subList(0, 2);
Vector<int> last v.subList(2);

v.remove(0);

Stanford vs. STL: Part 1

/* Stanford C++ Version */ /* Standard C++ Version */
Vector<int> v = { 1, 3, 7 }; std::vector<int>v=4{1,3,7};

vV += 271° v.push_back(271);

cout << v[0] << endl;
cout << v[v.size() - 1] << endl;

Vector<int> first v.subList(0, 2);
Vector<int> last v.subList(2);

v.remove(0);

Stanford vs. STL: Part 1

/* Stanford C++ Version */ /* Standard C++ Version */
Vector<int> v = { 1, 3, 7 }; std::vector<int>v=4{1,3,7};

vV += 271° v.push_back(271);

cout << v[0] << endl; cout << v.front() << endl;
cout << v[v.size() - 1] << endl; cout << v.back() << endl;

Vector<int> first v.subList(0, 2);
Vector<int> last v.subList(2);

v.remove(0);

Stanford vs. STL: Part 1

/* Stanford C++ Version */ /* Standard C++ Version */
Vector<int> v = { 1, 3, 7 }; std::vector<int>v=4{1,3,7};

vV += 271° v.push_back(271);

cout << v[0] << endl; cout << v.front() << endl;
cout << v[v.size() - 1] << endl; cout << v.back() << endl;

Vector<int> first v.subList(0, 2);

Vector<int> last v.subList(2); // no such thing as a sublist

v.remove(0);

Stanford vs. STL: Part 1

/* Stanford C++ Version */ /* Standard C++ Version */
Vector<int> v = { 1, 3, 7 }; std::vector<int>v=4{1,3,7};

vV += 271° v.push_back(271);

cout << v[0] << endl; cout << v.front() << endl;
cout << v[v.size() - 1] << endl; cout << v.back() << endl;

Vector<int> first v.subList(0, 2);

Vector<int> last v.subList(2); // no such thing as a sublist

v.remove(0); v.erase(v.begin()); // or v.pop_back()

Stanford vs. STL: Part 2

Stanford vs. STL: Part 2

Stanford C++ Version * [
Vector<string> V - { llAll, IIBII, "C" };

/* Counting for loop. */
for (int 1 = 0; 1 < v.size(); 1++) {

cout << v[i] << endl;

}

/* Range-based for loop. */
for (string elem: v) {

cout << elem << endl;
}

Stanford vs. STL: Part 2

Veéetor<strung> v = {4 "A"; "B", "C" }: std::vector<string> v = { “A”, “B”, “C" };

/* Counting for loop. */

for (int 1 = 0; 1 < v.size(); 1++) {
cout << v[i] << endl;

}

/* Range-based for loop. */
for (string elem: v) {

cout << elem << endl;
}

Stanford vs. STL: Part 2

Veéetor<strung> v = {4 "A"; "B", "C" }: std::vector<string> v = { “A”, “B”, “C" };

; Basically the same

/* Counting for loop. */ // . A . _ .

for (int 1 = 0; 1 < v.size(); i++) { fOr(ﬁze_tl-Q,|‘<\hSTF(L ++i) {
cout << v[i] << endl; cout << v[i] << endl;

} by
/* Range-based for loop. */

for (string elem: v) {
cout << elem << endl;
}

/*

Stanford vs. STL: Part 2

Stanford C++ Version * [

Vector<string> V — { IIAH, IIBII, "C" };

/* Counting for loop. */
for (int 1 = 0; 1 < v.size(); 1++) {

}

cout << v[i] << endl;

/* Range-based for loop. */
for (string elem: v) {

}

cout << elem << endl;

/* Standard C++ Version */
std::vector<string> v = { “A”, "B”, “"C" };

// Basically the same

for (size_ti=0; i < v.size(); ++i) {
cout << Vv[i] << endl;

b

// The same
for (string elem: v) {

cout << elem << endl;
by

‘G,

Example
Standard C++ Vector in (Basic) Action

39

Why the Difference?

Why doesn’t vector bounds check by default?

Hint: Remember our discussion of the philosophy of C++

Why the Difference?

Why doesn’t vector bounds check by default?

Hint: Remember our discussion of the philosophy of C++

If you write your program , bounds checking will just
your code down.

Play around with the std: :vector!

http://www.cplusplus.com/reference/vector/

vector/

42

http://www.cplusplus.com/reference/vector/vector/
http://www.cplusplus.com/reference/vector/vector/

Summary of Stanford Vector<T> vs : :vector<T>

What you want to do

Stanford Vector<int>

vector<int>

Create an empty vector

Vector<int> v;

vector<int> v;

Create a vector with n copies of zero

Vector<int> v(n);

vector<int> v(n);

Create a vector with n copies of a value k

Vector<int> v(n, k);

vector<int> v(n, k);

Add k to the end of the vector

v.add(k);

v.push_back(k);

Clear vector

v.clear();

v.clear();

Get the element at index i
(* Verify that i is in bounds!)

int k = v.get(i);
int k = v[i];

int k = v.at(i);
int k = v[i]; (%)

Check if the vector is empty

if (v.isEmpty()) ...

if (v.empty()) ...

Replace the element at index i
(* Verify that i is in bounds!)

v.get(i) = k;
v[i] = k;

v.at(i) = k;
v[i] = k; (°

One Important Similarity

What you want to do

Stanford Vector<int>

std: :vector<int>

Create an empty vector

Vector<int> v;

vector<int> v;

Create a vector with n copies of zero

Vector<int> v(n);

vector<int> v(n);

Create a vector with n copies of a value k

Add k to the end of the vector

Vector<int> v(n, k);

v.add(k);

vector<int> v(n, k);

v.push_back(k);

Clear vector

v.clear();

v.clear();

Get the element at index i (verify that i is in
bounds)

int k
int k

v.get(i);
v[i];

int k = v.at(i);
int k = v[i];

Check if the vector is empty

if (v.isEmpty()) ...

if (v.empty()) ...

Replace the element at index i (verify that i is
in bounds)

v.get(i) = k;
vii] = k;

v.at(i) = k;
vii] = k;

One Important Similarity

What you want to do

Stanford Vector<int>

std: :vector<int>

Create an empty vector

Vector<int> v;

vector<int> v;

Create a vector with n copies of zero

Vector<int> v(n);

vector<int> v(n);

Create a vector with n copies of a value k Vector<int> v(n, k); vector<int> v(n, k);
Add k to the end of the vector v.add(k); v.push_back(k);
Clear

Get the

bound What happens if we try to add an element to the

Check beginning of a vector?

Replac

in bou

What if we had a push front ()7

What if we had a push front ()7

Suppose push front existed and we used it.
Let’s look at a small vector:

2l el sl
I

Oth index

What if we had a push front ()7

Suppose push front existed and we used it.
Let’s look at a small vector:

vec.

'
2l el sl
I

Oth index

What if we had a push front()?

Suppose push front existed and we used it.
Let’s look at a small vector:

vec.

Need to shift these
elements up to make space
in the Oth position.

Oth index

What if we had a push front()?

Suppose push front existed and we used it.

vec.]

Let’s look at a small vector:
Need to shift these
elements up to make space

in the Oth position.

Oth index

What if we had a push front()?

Suppose push front existed and we used it.

vec.]

Let’s look at a small vector:
Need to shift these
elements up to make space

in the Oth position.

Oth index

What if we had a push front()?

Suppose push front existed and we used it.

vec.]

Let’s look at a small vector:
Need to shift these
elements up to make space

in the Oth position.

Oth index

What if we had a push front()?

Suppose push front existed and we used it.

vec.]

Let’s look at a small vector:
Need to shift these
elements up to make space

in the Oth position.

Oth index

What if we had a push front()?

Suppose push front existed and we used it.

vec.]

Let’s look at a small vector:
Need to shift these
elements up to make space

in the Oth position.

Oth index

What if we had a push front()?

Suppose push front existed and we used it.

vec.]

Let’s look at a small vector:
Need to shift these
elements up to make space

in the Oth position.

Oth index

What if we had a push front()?

Suppose push front existed and we used it.

vec.]

Let’s look at a small vector:
Need to shift these
elements up to make space

in the Oth position.

Oth index

What if we had a push front()?

Suppose push front existed and we used it.

vec.]

Let’s look at a small vector:
Need to shift these
elements up to make space

in the Oth position.

Oth index

What if we had a push front()?

Suppose push front existed and we used it.

vec.]

Let’s look at a small vector:
Need to shift these
elements up to make space

in the Oth position.

Oth index

What if we had a push front()?

Suppose push front existed and we used it.

vec.]

Let’s look at a small vector:
Need to shift these
elements up to make space

in the Oth position.

Oth index

What if we had a push front ()7

Suppose push front existed and we used it.
Let’s look at a small vector:

vec.

Need to shift these
elements up to make space
in the Oth position.

Oth index

What if we had a push front ()7

Suppose push front existed and we used it.
Let’s look at a small vector:

vec.

Now we can insert the new
element.

Oth index

What if we had a push front ()7

Suppose push front existed and we used it.
Let’s look at a small vector:

vec.

HERIDEEN
I

Oth index

What if we had a push front()?
AR -

HERIDEEN
I

Oth index

Conclusion: push front () is slow!

A vector is the tool of choice in most applications!
e F[ast
e Lightweight
e [ntuitive

However, we just saw vectors grow efficiently in only one direction.

Sometimes it is useful to be able to push front Qquickly!

C++ has a solution!

: :deque<>

: :deque<>

Pronounced “deck”.
Stands for a double ended queue.

Does everything a vector can do

AND

Unlike a vector, it is possible (and fast) to push front and
pop front!

Syntax of

/¥ Standard C++ Version */
std::deque<int>d =41, 3,7 };

d.push_back(271);
d.push_front(-1);

cout << d.front() << endl;
cout << d.back() << endl;

d.pop_back();
d.pop_front();

: :deque<>

//d=A{1,3,7}

//d={1,3,7, 271}
//d={-1,1,3,7, 271}

// prints -1
// prints 271

// d = {_11 1/ 3/ 7}
//d=A{1,3,7%}

‘G,

Example
Vector vs. Deque: push front

68

How does . :deque<T> work?

There is no single specific implementation of a deque, but one
common one might look like this:

™
/ \
HEEN

How does

: :deque<

> work?

There is no single specific implementation of a deque, but one
common one might look like this:

/

\

NULL
\

/
HEEE

T

4159

265

How does

: :deque<

> work?

There is no single specific implementation of a deque, but one
common one might look like this:

/

\

deq.

NULL
\

/
HEEE

T

4159

265

How does . :deque<T> work?

There is no single specific implementation of a deque, but one
common one might look like this:

deq.

NULL
VA L T e N

/ T~
H Ei

265

4159

How does

: :deque<

> work?

There is no single specific implementation of a deque, but one
common one might look like this:

-

\

deq.

NULL
\

v
H BE

T

4159

265

How does

: :deque<

> work?

There is no single specific implementation of a deque, but one
common one might look like this:

-

\

NULL
\

i
731

T

4159

265

How does

: :deque<

> work?

There is no single specific implementation of a deque, but one
common one might look like this:

-

\

deq.

NULL
\

i
731

T

4159

265

How does . :deque<T> work?

There is no single specific implementation of a deque, but one
common one might look like this:

deq.

NULL

P B e N

d T
731 2 6.5

4159

How does . :deque<T> work?

There is no single specific implementation of a deque, but one
common one might look like this:

deq.

NULL

P B e N

d T
731 2 6.5

4159

How does

: :deque<

> work?

There is no single specific implementation of a deque, but one
common one might look like this:

-

\

NULL
\

i
731

T

4159

265 3

How does

: :deque<

> work?

There is no single specific implementation of a deque, but one
common one might look like this:

-

\

deq.

NULL
\

i
731

T

4159

265 3

How does

: :deque<

> work?

There is no single specific implementation of a deque, but one
common one might look like this:

-

\

deq.

~

i
731

T

4159

265 3

How does

: :deque<

> work?

There is no single specific implementation of a deque, but one
common one might look like this:

-

\

deqg.

—

~

i
731

T

4159

d
265 3

How does

: :deque<

> work?

There is no single specific implementation of a deque, but one
common one might look like this:

-

\

deq.

~

i
731

4159

S

265 3

How does

: :deque<

> work?

There is no single specific implementation of a deque, but one
common one might look like this:

-

\

deq.

~

i
731

4159

S

265 3

How does

: :deque<

> work?

There is no single specific implementation of a deque, but one
common one might look like this:

-

\

~

i
731

4159

- OEE

265 3

Wait a minute...

Question

If deque can do everything a vector can do and also has a
push front..

Why use a vector at all?

Downsides of : :deque<T>

Deques support fast push front operations.

However, for other common operations like element access,
vector will always outperform a deque.

Let’s see this in action!

‘G,

Example
Vector vs. Deque: Element Access

88

Which to Use?

“vector is the type of sequence that should be used by default...
deque is the data structure of choice when most insertions and
deletions take place at the beginning or at the end of the
sequence.”

— C++ |ISO Standard (section 23.1.1.2): (’\ :’;\

Container Adaptors

Container Adaptors

Recall stacks and queues:

stack

Container Adaptors

Recall stacks and queues:

push

N\

stack

Container Adaptors

Recall stacks and queues:

stack

Container Adaptors

Recall stacks and queues:

pop

stack

Container Adaptors

Recall stacks and queues:

stack

Container Adaptors

Recall stacks and queues:

back

stack queue

Container Adaptors

Recall stacks and queues:

stack

push_back

back

Container Adaptors

Recall stacks and queues:

back

stack queue

Container Adaptors

Recall stacks and queues:

pop_front

d

back

stack queue

Container Adaptors

Recall stacks and queues:

back

stack queue

Container Adaptors

How can we implement stack and queue using the containers we have?

Container Adaptors

How can we implement stack and queue using the containers we have?

Stack:

Just limit the functionality of a vector/deque to only allow push back
and pop back.

Queue:

Just limit the functionality of a deque to only allow push back and
pop front.

Plus only allow access to top element

Container Adaptors

For this reason, stacks and queues are known as container adaptors.

std::Stac

Defined in header <stack>
template<

class T,

class Container = std::deque<T>
> class stack;

The std::stack class is a container adapter that gives the programmer the functionality of a stack - specifically, a
FILO (first-in, last-out) data structure.

The class template acts as a wrapper to the underlying container - only a specific set of functions is provided. The
stack pushes and pops the element from the back of the underlying container, known as the top of the stack.

Template parameters

T - The type of the stored elements. The behavior is undefined if T is not the same type as
Container::value_ type. (since C++17)

Container - The type of the underlying container to use to store the elements. The container must satisfy the
requirements of SequenceContainer. Additionally, it must provide the following functions with the
usual semantics:

¢ back()
e push_back()
« pop_back()
The standard containers std: :vector, std: :deque and std: : list satisfy these requirements.

std:queue

Defined in header <queue>

template<

class T,

class Container = std::deque<T>
> class queue;

The std: :queue class is a container adapter that gives the programmer the functionality of a queue - specifically, a
FIFO (first-in, first-out) data structure.

The class template acts as a wrapper to the underlying container - only a specific set of functions is provided. The
queue pushes the elements on the back of the underlying container and pops them from the front.

Template parameters

T - The type of the stored elements. The behavior is undefined if T is not the same type as
Container::value_type. (since C++17)

Container - The type of the underlying container to use to store the elements. The container must satisfy the
requirements of SequenceContainer. Additionally, it must provide the following functions with the
usual semantics:

e back()
o front()
e push_back()
« pop_front()
The standard containers std: :deque and std: : list satisfy these requirements.

Container Adaptors

For this reason, stacks and queues are known as container adaptors.

std::Stac

Defined in header <stack>
template<

class T,

class Container = std::deque<T>
> class stack;

The std::stack class is a container adapter that gives the programmer the functionality of a stack - specifically, a
FILO (first-in, last-out) data structure.

The class template acts as a wrapper to the underlying container - only a specific set of functions is provided. The
stack pushes and pops the element from the back of the underlying container, known as the top of the stack.

Template parameters

T - The type of the stored elements. The behavior is undefined if T is not the same type as
Container::value_ type. (since C++17)

Container - The type of the underlying container to use to store the elements. The container must satisfy the
requirements of SequenceContainer. Additionally, it must provide the following functions with the
usual semantics:

¢ back()
e push_back()
« pop_back()
The standard containers std: :vector, std: :deque and std: : list satisfy these requirements.

std:queue

Defined in header <queue>

template<

class T,

class Container = std::deque<T>
> class queue;

The std: :queue class is a container adapter that gives the programmer the functionality of a queue - specifically, a
FIFO (first-in, first-out) data structure.

The class template acts as a wrapper to the underlying container - only a specific set of functions is provided. The
queue pushes the elements on the back of the underlying container and pops them from the front.

Template parameters

T - The type of the stored elements. The behavior is undefined if T is not the same type as
Container::value_type. (since C++17)

Container - The type of the underlying container to use to store the elements. The container must satisfy the
requirements of SequenceContainer. Additionally, it must provide the following functions with the
usual semantics:

e back()
o front()
e push_back()
« pop_front()
The standard containers std: :deque and std: : list satisfy these requirements.

Container Adaptors

For this reason, stacks and queues are known as container adaptors.

std::Stac

Defined in header <stack>
template<

class T,

class Container = std::deque<T>
> class stack;

The std::stack class is a container adapter that gives the programmer the functionality of a stack - specifically, a
FILO (first-in, last-out) data structure.

The class template acts as a wrapper to the underlying container - only a specific set of functions is provided. The
stack pushes and pops the element from the back of the underlying container, known as the top of the stack.

Template parameters

T - The type of the stored elements. The behavior is undefined if T is not the same type as
ontainer::value De ince

Container - The type of the underlying container to use to store the elements. The container must satisfy the
requirements of SequenceContainer. Additionally, it must provide the following functions with the
usual semantics:

¢ back()
e push_back()
« pop_back()
The standard containers std: :vector, std: :deque and std: : list satisfy these requirements.

std:queue

Defined in header <queue>

template<

class T,

class Container = std::deque<T>
> class queue;

The std: :queue class is a container adapter that gives the programmer the functionality of a queue - specifically, a
FIFO (first-in, first-out) data structure.

The class template acts as a wrapper to the underlying container - only a specific set of functions is provided. The
queue pushes the elements on the back of the underlying container and pops them from the front.

Template parameters

T - The type of the stored elements. The behavior is undefined if T is not the same type as
Container::value t

Container - The type of the underlying container to use to store the elements. The container must satisfy the
requirements of SequenceContainer. Additionally, it must provide the following functions with the
usual semantics:

e back()
o front()
e push_back()
« pop_front()
The standard containers std: :deque and std: : list satisfy these requirements.

e

Next time

[terators and Associative Containers

106

Bonus Content...

‘G,

Example
The Power of the C++ STL

108

Where we are going...

Here is a program that generates a vector with random entries,
sorts it, and prints it, all in one go!

int kNumInts = 200;
vector<int> vec (kNumInts) ;

generate (vec. (), vec. (), rand);
sort (vec. (), vec. ());
copy (vec. (), vec. (),

ostream iterator<int>(cout, "\n"));

